ISSN 1600-5368

(Methyl (S)-3-(imidazol-4-yl)-2-{6-[(S)-2-(imidazol-4-yl)-1-(methoxycarbonyl)ethylaminocarbonyl]pyridine-2-carbonylamino}propionato)copper(II) methanol sesquisolvate

Minna T. Räisänen,* Martti Klinga, Markku Leskelä and Timo Repo

University of Helsinki, Department of Chemistry, Laboratory of Inorganic Chemistry, FIN-00014 Helsinki, Finland Correspondence e-mail: minna.t.raisanen@helsinki.fi

Received 11 September 2007; accepted 7 November 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.045; wR factor = 0.101; data-to-

In the Cu^{II} title complex, $[Cu(C_{21}H_{21}N_7O_6)]\cdot 1.5CH_4O$, two independent half-molecules of the title complex and one and a half methanol solvent molecules are in the asymmetric unit. The title complex possesses crystallographic C_2 symmetry. One methanol molecule is disordered around a twofold axis. The title complex geometry agrees well with that of the dihydrate determined earlier with the exception of an N-Cu-N angle deviating by almost 10°. The Cu^{II} centre is in a distorted square-pyramidal geometry, and intermolecular hydrogen bonds stabilize the molecular packing.

Related literature

parameter ratio = 16.3

For the dihydrate crystal structure determined earlier, see Otsuka et al. (1996); Kurosaki et al. (2001).

For related literature, see: An *et al.* (2003); Kottke & Stalke (1993); Moriuchi *et al.* (2001); Ryono & Weller (1987).

Experimental

Crystal data $[Cu(C_{21}H_{21}N_7O_6)] \cdot 1.5CH_4O$ $M_r = 577.04$

Orthorhombic, $P2_12_12_1a = 13.701$ (1) Å

b = 13.771 (1) Å c = 13.590 (2) Å V = 2564.1 (5) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.772, T_{\rm max} = 0.839$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ H-atom parameters constrained $wR(F^2) = 0.101$ $\Delta \rho_{max} = 0.36 \text{ e Å}^{-3}$ S = 0.92 $\Delta \rho_{min} = -0.50 \text{ e Å}^{-3}$ 5867 reflectionsAbsolute structure: Flack (1983),359 parameters2561 Friedel pairs2 restraintsFlack parameter: -0.012 (16)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3\cdotsO1^{i}$ $N7-H7\cdotsO4^{ii}$ $O11-H11A\cdotsO5^{iii}$	0.88 0.88 0.84	1.86 1.88 2.00	2.719 (4) 2.738 (4) 2.785 (4)	166 163 155
Symmetry codes: (i) $-x - \frac{1}{2}, y + \frac{1}{2}, -z + 1.$	$x - \frac{1}{2}, -y - \frac{1}{2},$	-z + 1; (ii)	$-x - \frac{1}{2}, y + \frac{1}{2}, -$	-z + 2; (iii)

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *DIRAX* (Duisenberg, 1992); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

MTR is grateful to the Magnus Ehrnrooth Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2055).

References

An, B., Cheah, K., Wong, W., Shi, J., Xu, N., Yang, Y. & Gong, M. (2003). J. Alloys Compd, 352, 143–147.

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615-619.
- Kurosaki, H., Sharma, R. K., Aoki, S., Inoue, T., Okamoto, Y., Sugiura, Y., Doi, M., Ishida, T., Otsuka, M. & Goto, M. (2001). J. Chem. Soc. Dalton Trans. pp. 441–447.
- Moriuchi, T., Nishiyama, M., Yoshida, K., Ishikawa, T. & Hirao, T. (2001). Org. Lett. 3, 1459–1461.
- Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otsuka, M., Satake, H., Murakami, S., Doi, M., Ishida, T., Shibasaki, M. & Sugiura, Y. (1996). *Bioorg. Med. Chem.* 4, 1703–1708.
- Ryono, D. E. & Weller, H. N. III (1987). Patent EP231919.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.20$ mm

23034 measured reflections

5867 independent reflections

4185 reflections with $I > 2\sigma(I)$

 $\mu = 0.91 \text{ mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.064$

Acta Cryst. (2007). E63, m3021 [doi:10.1107/S1600536807056863]

(Methyl (S)-3-(imidazol-4-yl)-2-{6-[(S)-2-(imidazol-4-yl)-1-(methoxycarbonyl)ethylaminocarbonyl]pyridine-2-carbonylamino}propionato)copper(II) methanol sesquisolvate

M. T. Räisänen, M. Klinga, M. Leskelä and T. Repo

Comment

The title complex with one and a half methanol solvates crystallized in $P2_12_12$ space group having two independent half molecules in the asymmetric unit sitting on a crystallographic C₂ symmetry axes. Cu1, N1, C3 atoms of the one molecule and Cu2, N5 and C14 of the other molecule lie on 2-fold axes. The methanol molecule O12—C201 with site occupation factor 0.5 is disordered about a 2-fold axis. The same complex in dihydrate form instead of methanol has been previously found to crystallize in the P4₃2₁2 space group (Otsuka *et al.*, 1996, Kurosaki *et al.*, 2001). In both complexes, geometry around a five coordinated Cu(II) cation is a distorted square pyramid (Figure 1). The measured bond lengths and angles of the title complex agree well with the values obtained for the previously determined structure (Kurosaki *et al.*, 2001) with one exception. The N1—Cu1—N4 angle of the title complex differs as much as 9.85° less from the corresponding angle of the previously determined complex. Several intermolecular hydrogen bonds stabilize the molecular packing of the title complex.

Experimental

The title complex (4) was synthesized according to literature procedures. For the ligand synthesis, 2,6-pyridinedicarbonyl dichloride (1) (An *et al.*, 2003) and *L*-histidine methyl ester dihydrochloride (2) (Ryono & Weller, 1987) were prepared by reacting SOCl₂ with 2,6-pyridinedicarboxylic acid and *L*-histidine, respectively. Ligand (3) of the title complex was synthesized by coupling 1 and 2 (Moriuchi *et al.*, 2001). Finally, 4 was synthesized at room temperature by adding a MeOH solution of $(CH_3COO)_2Cu \cdot H_2O$ (0.066 g, 0.33 mmol) into a MeOH solution of 3 (0.155 g, 0.33 mmol) and stirring the blue solution formed for 70 h. After solvent removal in a vacuum, the complex was obtained as a blue powder (Kurosaki *et al.*, 2001). Blue crystals of the title compound, suitable for X-ray analysis, were obtained from a saturated solution of MeOH–MeCN (2:1).

Refinement

The crystal selected for the X-ray measurement at 173 K was mounted on a glass fibre using the oil drop method (Kottke & Stalke, 1993). H atoms were introduced in their calculated positions (X—H = 0.84, 0.88, 0.95, 0.98, 0.99, or 1.00 Å, U_{iso} =1.2 times the U_{eq} of the carrier atom and U_{iso} =1.5 times the U_{eq} of the carrier atom for methyl and OH H atoms) and were kept riding with fixed geometry with respect to their carrier atoms. No H atom positions were identified for the disordered methanol molecule.

Figures

Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for the sake of clarity.

$\label{eq:limit} (Methyl (S)-3-(imidazol-4-yl)-\ 2-\{6-[(S)-2-(imidazol-4-yl)-1-(methoxycarbonyl)ethylaminocarbonyl]pyridine-\ 2-carbonylamino\}propionato)copper(II) methanol sesquisolvate$

Crystal data

[Cu(C ₂₁ H ₂₁ N ₇ O ₆)]·1.5CH ₄ O	$F_{000} = 1192$
$M_r = 577.04$	$D_{\rm x} = 1.495 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2 2ab	Cell parameters from 23034 reflections
a = 13.701 (1) Å	$\theta = 3.3 - 27.5^{\circ}$
b = 13.771 (1) Å	$\mu = 0.91 \text{ mm}^{-1}$
c = 13.590 (2) Å	T = 173 (2) K
$V = 2564.1 (5) \text{ Å}^3$	Block, blue
Z = 4	$0.30\times0.20\times0.20\ mm$
Data collection	

Data collection

KappaCCD diffractometer	5867 independent reflections
Radiation source: fine-focus sealed tube	4185 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.064$
T = 173(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω and ϕ scans	$\theta_{\min} = 3.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 17$
$T_{\min} = 0.772, T_{\max} = 0.839$	$k = -17 \rightarrow 17$
23034 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.0514P)^2 + 0.3474P]$ where $P = (F_o^2 + 2F_c^2)/3$

$wR(F^2) = 0.101$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 0.92	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
5867 reflections	$\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3}$
359 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.012 (16)

Secondary atom site location: difference Fourier map

									. 2
Fractional	atomic	coordinates	and i	isotronic a	r eauivalei	nt isotronic	disnlaceme	nt narameter	$s(A^2)$
1 / actionat	aionnic	coordinates	unu i	sou opie o	, cquivaici		anspiaceme	ni paramerers	5 (21)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$ Occ. (<1)
Cu1	-0.5000	-0.5000	0.48333 (4)	0.02001 (14)
01	-0.3638 (2)	-0.28347 (19)	0.32677 (19)	0.0349 (7)
N1	-0.5000	-0.5000	0.3408 (2)	0.0191 (8)
C1	-0.4520 (2)	-0.4300 (2)	0.2937 (3)	0.0214 (8)
N2	-0.4164 (2)	-0.38220 (19)	0.4561 (2)	0.0223 (7)
Cu2	-0.5000	0.0000	1.00029 (3)	0.01894 (14)
C2	-0.4508 (3)	-0.4272 (3)	0.1921 (3)	0.0291 (9)
H2	-0.4174	-0.3771	0.1579	0.035*
O2	-0.2196 (2)	-0.3824 (2)	0.5169 (2)	0.0485 (8)
N3	-0.6990 (2)	-0.3186 (2)	0.6318 (2)	0.0303 (8)
H3	-0.7571	-0.2948	0.6451	0.036*
O3	-0.2429 (2)	-0.2419 (2)	0.5985 (2)	0.0480 (9)
C3	-0.5000	-0.5000	0.1414 (3)	0.0376 (13)
H3A	-0.5000	-0.5000	0.0715	0.045*
N4	-0.5842 (2)	-0.4186 (2)	0.5793 (2)	0.0236 (7)
C4	-0.4052 (3)	-0.3578 (2)	0.3633 (3)	0.0234 (8)
O4	-0.26885 (19)	-0.11115 (17)	0.84523 (18)	0.0309 (6)
N5	-0.5000	0.0000	0.8564 (2)	0.0216 (8)
O5	-0.35581 (18)	-0.26385 (17)	1.03435 (18)	0.0287 (6)
C5	-0.3818 (3)	-0.3123 (3)	0.5292 (3)	0.0298 (9)
Н5	-0.3986	-0.2453	0.5066	0.036*
O6	-0.21054 (19)	-0.23048 (17)	1.10423 (18)	0.0281 (6)
C6	-0.2722 (3)	-0.3190 (3)	0.5447 (3)	0.0367 (10)
N6	-0.3735 (2)	-0.07025 (18)	0.9725 (2)	0.0190 (6)
N7	-0.3301 (2)	0.2171 (2)	1.1365 (2)	0.0247 (7)
H7	-0.3101	0.2773	1.1444	0.030*
C7	-0.1386 (3)	-0.2378 (4)	0.6201 (3)	0.0720 (18)
H7A	-0.1198	-0.2951	0.6584	0.108*
H7B	-0.1243	-0.1789	0.6580	0.108*
H7C	-0.1018	-0.2365	0.5583	0.108*
N8	-0.4247 (2)	0.09291 (19)	1.0957 (2)	0.0197 (6)
C8	-0.4313 (3)	-0.3311 (3)	0.6305 (3)	0.0287 (10)
H8A	-0.4052	-0.3920	0.6588	0.034*
H8B	-0.4146	-0.2774	0.6759	0.034*
С9	-0.5404 (3)	-0.3388 (3)	0.6225 (3)	0.0245 (9)
C10	-0.6110 (3)	-0.2770 (3)	0.6542 (3)	0.0321 (9)

1110	0 (010	0.01/0	0.0050	0.020*	
H10	-0.6012	-0.2163	0.6859	0.038*	
C100	-0.0049 (4)	0.1275 (3)	0.1186 (3)	0.0557 (11)	
H10A	0.0377	0.1242	0.0608	0.084*	
H10B	-0.0637	0.0886	0.1069	0.084*	
H10C	0.0298	0.1021	0.1762	0.084*	
C11	-0.6796 (3)	-0.4027 (3)	0.5859 (3)	0.0272 (9)	
H11	-0.7281	-0.4455	0.5611	0.033*	
011	-0.0318 (3)	0.2254 (2)	0.1361 (2)	0.0625 (10)	
H11A	-0.0627	0.2468	0.0873	0.094*	
C12	-0.4237 (3)	-0.0397 (2)	0.8098 (3)	0.0209 (8)	
C13	-0.4217 (3)	-0.0407 (3)	0.7086 (3)	0.0345 (10)	
H13	-0.3681	-0.0685	0.6744	0.041*	
C14	-0.5000	0.0000	0.6568 (4)	0.0493 (17)	
H14	-0.5000	0.0000	0.5869	0.059*	
C15	-0.3479 (3)	-0.0782 (2)	0.8793 (2)	0.0211 (8)	
C16	-0.2992 (3)	-0.0964 (2)	1.0444 (2)	0.0222 (8)	
H16	-0.2344	-0.0723	1.0209	0.027*	
C17	-0.2936 (3)	-0.2061 (3)	1.0588 (2)	0.0222 (8)	
C18	-0.1962 (3)	-0.3332 (2)	1.1250 (3)	0.0314 (9)	
H18A	-0.1270	-0.3454	1.1384	0.047*	
H18B	-0.2168	-0.3717	1.0680	0.047*	
H18C	-0.2351	-0.3516	1.1826	0.047*	
C19	-0.3216 (3)	-0.0500 (2)	1.1451 (3)	0.0251 (9)	
H19A	-0.3804	-0.0811	1.1734	0.030*	
H19B	-0.2663	-0.0624	1.1903	0.030*	
C20	-0.3383 (3)	0.0574 (2)	1.1379 (3)	0.0221 (8)	
C21	-0.2801 (3)	0.1340 (3)	1.1632 (2)	0.0264 (8)	
H21	-0.2175	0.1308	1.1933	0.032*	
C22	-0.4153 (3)	0.1889 (2)	1.0961 (3)	0.0243 (8)	
H22	-0.4629	0.2325	1.0709	0.029*	
012	-0.5670 (9)	0.0368 (19)	0.4155 (9)	0.261 (12)	0.50
C201	-0.495 (3)	-0.022 (4)	0.3637 (9)	0.127 (15)	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0194 (3)	0.0192 (3)	0.0214 (3)	-0.0025 (3)	0.000	0.000
01	0.0409 (18)	0.0325 (15)	0.0313 (15)	-0.0211 (14)	-0.0055 (13)	0.0061 (12)
N1	0.017 (2)	0.0204 (19)	0.0199 (17)	-0.001 (2)	0.000	0.000
C1	0.0170 (19)	0.0213 (19)	0.026 (2)	-0.0005 (16)	-0.0040 (15)	0.0020 (15)
N2	0.0215 (17)	0.0207 (15)	0.0247 (16)	-0.0046 (14)	-0.0053 (13)	0.0008 (12)
Cu2	0.0188 (3)	0.0179 (3)	0.0201 (3)	0.0005 (3)	0.000	0.000
C2	0.035 (2)	0.027 (2)	0.026 (2)	-0.0147 (18)	0.0011 (16)	0.0056 (16)
O2	0.0286 (17)	0.0528 (19)	0.064 (2)	-0.0093 (16)	-0.0049 (16)	0.0069 (16)
N3	0.028 (2)	0.0336 (18)	0.0291 (17)	0.0136 (16)	0.0041 (14)	-0.0031 (14)
O3	0.044 (2)	0.064 (2)	0.0369 (17)	-0.0329 (17)	-0.0093 (14)	-0.0055 (14)
C3	0.050 (4)	0.041 (3)	0.021 (2)	-0.018 (4)	0.000	0.000
N4	0.0218 (17)	0.0237 (16)	0.0252 (16)	0.0024 (15)	-0.0017 (13)	0.0004 (13)

C4	0.018 (2)	0.0220 (19)	0.030 (2)	-0.0034 (16)	-0.0042 (15)	0.0019 (15)
O4	0.0337 (17)	0.0282 (14)	0.0308 (15)	0.0126 (13)	0.0078 (12)	0.0063 (11)
N5	0.030 (2)	0.0125 (18)	0.0219 (18)	-0.003 (2)	0.000	0.000
05	0.0285 (15)	0.0203 (13)	0.0374 (15)	-0.0036 (12)	-0.0031 (12)	0.0038 (11)
C5	0.033 (2)	0.027 (2)	0.030 (2)	-0.0073 (17)	-0.0115 (17)	-0.0001 (16)
O6	0.0273 (15)	0.0199 (13)	0.0371 (15)	0.0093 (12)	-0.0061 (12)	0.0008 (11)
C6	0.038 (3)	0.051 (3)	0.021 (2)	-0.017 (2)	-0.0098 (19)	0.0127 (19)
N6	0.0195 (15)	0.0163 (14)	0.0210 (15)	0.0040 (13)	0.0000 (12)	0.0002 (12)
N7	0.0271 (19)	0.0172 (16)	0.0299 (17)	-0.0066 (14)	-0.0002 (14)	-0.0019 (13)
C7	0.060 (4)	0.121 (5)	0.035 (3)	-0.061 (3)	-0.012 (2)	0.018 (3)
N8	0.0201 (16)	0.0144 (15)	0.0246 (16)	-0.0015 (13)	-0.0021 (13)	-0.0025 (12)
C8	0.030 (2)	0.030 (2)	0.026 (2)	-0.0027 (19)	-0.0106 (18)	-0.0069 (17)
C9	0.030 (2)	0.024 (2)	0.020 (2)	0.0057 (17)	0.0000 (16)	-0.0018 (15)
C10	0.040 (3)	0.027 (2)	0.028 (2)	0.004 (2)	-0.0044 (18)	-0.0081 (17)
C100	0.066 (3)	0.052 (3)	0.049 (2)	0.015 (3)	-0.002 (3)	-0.0067 (19)
C11	0.026 (2)	0.026 (2)	0.029 (2)	0.0058 (17)	-0.0020 (17)	-0.0001 (16)
011	0.081 (3)	0.053 (2)	0.053 (2)	0.0131 (18)	-0.0121 (17)	-0.0071 (16)
C12	0.024 (2)	0.0166 (16)	0.0219 (18)	0.0038 (15)	0.0042 (16)	-0.0004 (13)
C13	0.048 (3)	0.035 (2)	0.021 (2)	0.016 (2)	0.0094 (18)	-0.0004 (15)
C14	0.064 (4)	0.064 (4)	0.020 (2)	0.034 (5)	0.000	0.000
C15	0.028 (2)	0.0104 (16)	0.0248 (19)	0.0004 (16)	0.0030 (15)	0.0030 (14)
C16	0.0180 (19)	0.0203 (18)	0.0283 (19)	0.0000 (16)	0.0024 (15)	0.0039 (15)
C17	0.025 (2)	0.0210 (19)	0.0205 (18)	0.0077 (18)	0.0083 (15)	0.0041 (14)
C18	0.039 (3)	0.0208 (19)	0.035 (2)	0.0124 (18)	-0.0047 (19)	0.0031 (16)
C19	0.027 (2)	0.024 (2)	0.024 (2)	-0.0003 (17)	-0.0014 (17)	-0.0001 (16)
C20	0.024 (2)	0.0163 (19)	0.026 (2)	-0.0053 (17)	0.0024 (16)	-0.0018 (16)
C21	0.020 (2)	0.033 (2)	0.027 (2)	-0.0047 (18)	-0.0005 (15)	-0.0049 (16)
C22	0.027 (2)	0.0196 (19)	0.026 (2)	0.0002 (17)	0.0006 (16)	-0.0015 (15)
012	0.096 (9)	0.58 (4)	0.103 (9)	-0.084 (15)	0.006 (7)	-0.129 (16)
C201	0.100 (13)	0.23 (5)	0.057 (6)	-0.063 (16)	-0.032 (15)	0.020 (12)
C						

Geometric parameters	(A,	%	
----------------------	-----	---	--

Cu1—N1	1.937 (3)	N6—C16	1.456 (4)
Cu1—N2 ⁱ	2.020 (3)	N7—C22	1.347 (4)
Cu1—N2	2.020 (3)	N7—C21	1.383 (5)
Cu1—N4 ⁱ	2.071 (3)	N7—H7	0.8800
Cu1—N4	2.071 (3)	С7—Н7А	0.9800
O1—C4	1.271 (4)	С7—Н7В	0.9800
N1—C1	1.331 (4)	С7—Н7С	0.9800
N1—C1 ⁱ	1.331 (4)	N8—C22	1.329 (4)
C1—C2	1.381 (5)	N8—C20	1.403 (4)
C1—C4	1.514 (5)	C8—C9	1.502 (5)
N2—C4	1.315 (4)	C8—H8A	0.9900
N2—C5	1.461 (4)	С8—Н8В	0.9900
Cu2—N5	1.956 (3)	C9—C10	1.359 (5)
Cu2—N6	2.020 (3)	C10—H10	0.9500
Cu2—N6 ⁱⁱ	2.020 (3)	C100—O11	1.416 (5)

Cu2—N8	2.094 (3)	C100—H10A	0.9800
Cu2—N8 ⁱⁱ	2.094 (3)	С100—Н10В	0.9800
C2—C3	1.390 (4)	C100—H10C	0.9800
C2—H2	0.9500	C11—H11	0.9500
O2—C6	1.194 (5)	O11—H11A	0.8400
N3—C11	1.342 (5)	C12—C13	1.376 (5)
N3—C10	1.369 (5)	C12—C15	1.500 (5)
N3—H3	0.8800	C13—C14	1.399 (5)
O3—C6	1.351 (5)	C13—H13	0.9500
O3—C7	1.459 (5)	C14—C13 ⁱⁱ	1.399 (5)
C3—C2 ⁱ	1.390 (4)	C14—H14	0.9500
С3—НЗА	0.9500	C16—C17	1.525 (5)
N4—C11	1.328 (4)	C16—C19	1.541 (5)
N4—C9	1.383 (4)	C16—H16	1.0000
O4—C15	1.263 (4)	C18—H18A	0.9800
N5—C12	1.339 (4)	C18—H18B	0.9800
N5—C12 ⁱⁱ	1.339 (4)	C18—H18C	0.9800
O5—C17	1.213 (4)	C19—C20	1.499 (4)
C5—C6	1.520 (6)	C19—H19A	0.9900
C5—C8	1.556 (5)	C19—H19B	0.9900
С5—Н5	1.0000	C20—C21	1.368 (5)
O6—C17	1.337 (4)	C21—H21	0.9500
O6—C18	1.456 (4)	С22—Н22	0.9500
N6-C15	1 318 (4)	012-C201	1.452 (10)
	1.510(1)	012 0201	
$N1$ — $Cu1$ — $N2^{i}$	79.45 (8)	Н7В—С7—Н7С	109.5
N1-Cu1-N2 ⁱ N1-Cu1-N2	79.45 (8) 79.45 (8)	H7B—C7—H7C C22—N8—C20	109.5 105.3 (3)
N1-Cu1-N2 ⁱ N1-Cu1-N2 N2 ⁱ -Cu1-N2	79.45 (8) 79.45 (8) 158.89 (16)	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2	109.5 105.3 (3) 131.2 (2)
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8)	H7BC7H7C C22N8C20 C22N8Cu2 C20N8Cu2	109.5 105.3 (3) 131.2 (2) 117.1 (2)
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2^{i}-Cu1-N4^{i}$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11)	H7BC7H7C C22N8C20 C22N8Cu2 C20N8Cu2 C9C8C5	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3)
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2^{i}-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11)	H7BC7H7C C22N8C20 C22N8Cu2 C20N8Cu2 C9C8C5 C9C8H8A	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2^{i}-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N1-Cu1-N4^{i}$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8)	H7BC7H7C C22N8C20 C22N8Cu2 C20N8Cu2 C9C8C5 C9C8H8A C5C8H8A	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2^{i}-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N1-Cu1-N4^{i}$ $N1-Cu1-N4$ $N2^{i}-Cu1-N4$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11)	H7BC7H7C C22N8C20 C22N8Cu2 C20N8Cu2 C9C8C5 C9C8H8A C5C8H8A C9C8H8B	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1
$N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2$ $N2^{i} - Cu1 - N2$ $N1 - Cu1 - N4^{i}$ $N2^{i} - Cu1 - N4^{i}$ $N2 - Cu1 - N4^{i}$ $N1 - Cu1 - N4$ $N2^{i} - Cu1 - N4$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 89.80 (11)	H7BC7H7C C22N8C20 C22N8Cu2 C20N8Cu2 C9C8C5 C9C8H8A C5C8H8A C9C8H8B C5C8H8B	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N1-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2-Cu1-N4$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 89.80 (11) 101.91 (15)	H7BC7H7C C22N8C20 C22N8Cu2 C20N8Cu2 C9C8C5 C9C8H8A C5C8H8B C5C8H8B H8AC8H8B	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 109.1
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N1-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{i}-Cu1-N4$ $N4^{i}-Cu1-N4$ $N4^{i}-Cu1-N4$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 122.5 (4)	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C5—C8—H8B C5—C8—H8B H8A—C8—H8B C10—C9—N4	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 107.9 108.8 (3)
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2^{i}-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N1-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2-Cu1-N4$ $N2-Cu1-N4$ $N4^{i}-Cu1-N4$ $C1-N1-C1^{i}$ $C1-N1-Cu1$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 89.80 (11) 101.91 (15) 122.5 (4) 118.75 (19)	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C5—C8—H8B H8A—C8—H8B H8A—C8—H8B C10—C9—N4 C10—C9—C8	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4)
$N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2$ $N2^{i} - Cu1 - N2$ $N1 - Cu1 - N4^{i}$ $N2^{i} - Cu1 - N4^{i}$ $N2 - Cu1 - N4^{i}$ $N1 - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $C1 - N1 - C1^{i}$ $C1 - N1 - Cu1$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 122.5 (4) 118.75 (19) 118.75 (19)	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C5—C8—H8B H8A—C8—H8B H8A—C8—H8B C10—C9—N4 C10—C9—C8 N4—C9—C8	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4) 121.2 (3)
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N2-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{i}-Cu1-N4$ $N4^{i}-Cu1-N4$ $N4^{i}-Cu1-N4$ $C1-N1-C1^{i}$ $C1-N1-Cu1$ $C1^{i}-N1-Cu1$ $N1-C1-C2$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 101.91 (15) 122.5 (4) 118.75 (19) 120.4 (3)	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C5—C8—H8B Ka—C8—H8B C10—C9—N4 C10—C9—C8 N4—C9—C8 C9—C10—N3	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4) 121.2 (3) 107.2 (3)
$N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N2^{i}-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2^{i}-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N1-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{-}Cu1-N4$ $N2-Cu1-N4$ $N4^{i}-Cu1-N4$ $C1-N1-C1^{i}$ $C1-N1-C1^{i}$ $C1^{i}-N1-Cu1$ $N1-C1-C2$ $N1-C1-C4$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 89.80 (11) 101.91 (15) 122.5 (4) 118.75 (19) 1120.4 (3) 112.6 (3)	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C9—C8—H8B C5—C8—H8B C10—C9—N4 C10—C9—C8 N4—C9—C8 C9—C10—N3 C9—C10—H10	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4) 121.2 (3) 107.2 (3) 126.4
$N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2$ $N2^{i} - Cu1 - N2$ $N1 - Cu1 - N4^{i}$ $N2^{i} - Cu1 - N4^{i}$ $N2 - Cu1 - N4^{i}$ $N1 - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $C1 - N1 - C1^{i}$ $C1 - N1 - Cu1$ $N1 - C1 - C2$ $N1 - C1 - C4$ $C2 - C1 - C4$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 103.55 (11) 101.91 (15) 122.5 (4) 118.75 (19) 120.4 (3) 112.6 (3) 127.0 (3)	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C5—C8—H8B H8A—C8—H8B C10—C9—C8 N4—C9—C8 C9—C10—H10 N3—C10—H10	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4) 121.2 (3) 107.2 (3) 126.4 126.4
$N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2$ $N2^{i} - Cu1 - N2$ $N1 - Cu1 - N4^{i}$ $N2^{i} - Cu1 - N4^{i}$ $N2 - Cu1 - N4^{i}$ $N2 - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $C1 - N1 - C1^{i}$ $C1 - N1 - Cu1$ $C1^{i} - N1 - Cu1$ $N1 - C1 - C2$ $N1 - C1 - C4$ $C2 - C1 - C4$ $C2 - C1 - C4$ $C4 - N2 - C5$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 103.55 (11) 103.55 (11) 103.55 (11) 103.55 (11) 104.91 (15) 122.5 (4) 118.75 (19) 118.75 (19) 120.4 (3) 112.6 (3) 127.0 (3) 116.5 (3)	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C9—C8—H8B C5—C8—H8B C10—C9—N4 C10—C9—C8 N4—C9—C8 C9—C10—H10 N3—C10—H10 O11—C100—H10A	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4) 121.2 (3) 107.2 (3) 126.4 126.4 126.4 109.5
$N1-Cu1-N2^{i}$ $N1-Cu1-N2^{i}$ $N1-Cu1-N2$ $N1-Cu1-N4^{i}$ $N2^{i}-Cu1-N4^{i}$ $N2-Cu1-N4^{i}$ $N1-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{i}-Cu1-N4$ $N2^{-}Cu1-N4$ $N2^{-}Cu1-N4$ $N2-Cu1-N4$ $C1-N1-C1^{i}$ $C1-N1-Cu1$ $C1^{i}-N1-Cu1$ $N1-C1-C2$ $N1-C1-C4$ $C2-C1-C4$ $C4-N2-C5$ $C4-N2-Cu1$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 103.55 (11) 129.05 (8) 103.55 (11) 103.55 (11) 103.55 (11) 118.75 (19) 118.75 (19) 120.4 (3) 112.6 (3) 127.0 (3) 116.5 (3) 116.6 (2)	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C9—C8—H8B C5—C8—H8B C10—C9—N4 C10—C9—C8 N4—C9—C8 C9—C10—H10 N3—C10—H10 O11—C100—H10B	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4) 121.2 (3) 107.2 (3) 126.4 126.4 109.5 109.5
$N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2$ $N2^{i} - Cu1 - N2$ $N1 - Cu1 - N4^{i}$ $N2^{-} - Cu1 - N4^{i}$ $N2 - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $C1 - N1 - C1^{i}$ $C1 - N1 - Cu1$ $N1 - C1 - C2$ $N1 - C1 - C2$ $N1 - C1 - C4$ $C2 - C1 - C4$ $C4 - N2 - C5$ $C4 - N2 - Cu1$ $C5 - N2 - Cu1$	79.45 (8) 79.45 (8) 158.89 (16) 129.05 (8) 89.80 (11) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 129.05 (8) 103.55 (11) 89.80 (11) 101.91 (15) 122.5 (4) 118.75 (19) 120.4 (3) 112.6 (3) 127.0 (3) 116.5 (3) 116.6 (2) 126.0 (2)	H7B—C7—H7C C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C5—C8—H8B KA—C8—H8B C10—C9—C8 N4—C9—C8 C9—C10—H10 N3—C10—H10A O11—C100—H10B H10A—C100—H10B	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4) 121.2 (3) 107.2 (3) 126.4 126.4 109.5 109.5
$N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2$ $N2^{i} - Cu1 - N2$ $N1 - Cu1 - N4^{i}$ $N2^{-} - Cu1 - N4^{i}$ $N2 - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $C1 - N1 - C1^{i}$ $C1 - N1 - Cu1$ $N1 - C1 - C2$ $N1 - C1 - C4$ $C2 - C1 - C4$ $C4 - N2 - C5$ $C4 - N2 - Cu1$ $C5 - N2 - Cu1$ $N5 - Cu2 - N6$	79.45 (8) $79.45 (8)$ $79.45 (8)$ $158.89 (16)$ $129.05 (8)$ $89.80 (11)$ $103.55 (11)$ $129.05 (8)$ $103.55 (11)$ $89.80 (11)$ $101.91 (15)$ $122.5 (4)$ $118.75 (19)$ $112.6 (3)$ $127.0 (3)$ $116.5 (3)$ $116.6 (2)$ $126.0 (2)$ $79.23 (8)$	$\begin{array}{c} H7B-C7-H7C\\ C22-N8-C20\\ C22-N8-Cu2\\ C20-N8-Cu2\\ C9-C8-C5\\ C9-C8-H8A\\ C5-C8-H8A\\ C5-C8-H8B\\ C5-C8-H8B\\ H8A-C8-H8B\\ C10-C9-N4\\ C10-C9-C8\\ N4-C9-C8\\ N4-C9-C8\\ C9-C10-H10\\ N3-C10-H10\\ N3-C10-H10\\ O11-C100-H10B\\ H10A-C100-H10B\\ O11-C100-H10B\\ O11-C100-H10B\\ O11-C100-H10C\\ \end{array}$	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4) 121.2 (3) 107.2 (3) 126.4 126.4 126.4 109.5 109.5 109.5
$N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2^{i}$ $N1 - Cu1 - N2$ $N1 - Cu1 - N4^{i}$ $N2^{i} - Cu1 - N4^{i}$ $N2 - Cu1 - N4^{i}$ $N2 - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N2^{i} - Cu1 - N4$ $N2^{-} - Cu1 - N4$ $N4^{i} - Cu1 - N4$ $C1 - N1 - C1^{i}$ $C1 - N1 - Cu1$ $C1^{i} - N1 - Cu1$ $N1 - C1 - C2$ $N1 - C1 - C4$ $C2 - C1 - C4$ $C4 - N2 - C5$ $C4 - N2 - Cu1$ $N5 - Cu2 - N6^{ii}$	79.45 (8) $79.45 (8)$ $79.45 (8)$ $158.89 (16)$ $129.05 (8)$ $89.80 (11)$ $103.55 (11)$ $129.05 (8)$ $103.55 (11)$ $89.80 (11)$ $101.91 (15)$ $122.5 (4)$ $118.75 (19)$ $118.75 (19)$ $112.6 (3)$ $127.0 (3)$ $116.5 (3)$ $116.6 (2)$ $126.0 (2)$ $79.23 (8)$	H7B—C7—H7C C22—N8—C20 C22—N8—Cu2 C20—N8—Cu2 C9—C8—C5 C9—C8—H8A C5—C8—H8A C9—C8—H8B KA—C8—H8B C10—C9—N4 C10—C9—C8 N4—C9—C8 C9—C10—H10 N3—C10—H10 O11—C100—H10B H10A—C100—H10C H10A—C100—H10C	109.5 105.3 (3) 131.2 (2) 117.1 (2) 112.4 (3) 109.1 109.1 109.1 109.1 109.1 109.1 107.9 108.8 (3) 129.9 (4) 121.2 (3) 107.2 (3) 126.4 126.4 109.5 109.5 109.5 109.5

N5—Cu2—N8	128.27 (8)	N4—C11—N3	111.6 (3)
N6—Cu2—N8	89.18 (11)	N4—C11—H11	124.2
N6 ⁱⁱ —Cu2—N8	104.23 (10)	N3—C11—H11	124.2
N5—Cu2—N8 ⁱⁱ	128.27 (8)	C100—O11—H11A	109.5
N6—Cu2—N8 ⁱⁱ	104.23 (10)	N5-C12-C13	119.4 (3)
N6 ⁱⁱ —Cu2—N8 ⁱⁱ	89.18 (11)	N5-C12-C15	112.8 (3)
N8—Cu2—N8 ⁱⁱ	103.46 (15)	C13—C12—C15	127.8 (3)
C1—C2—C3	118.0 (3)	C12—C13—C14	118.9 (4)
C1—C2—H2	121.0	С12—С13—Н13	120.5
С3—С2—Н2	121.0	C14—C13—H13	120.5
C11—N3—C10	106.9 (3)	C13—C14—C13 ⁱⁱ	119.7 (5)
С11—N3—H3	126.6	C13—C14—H14	120.2
C10—N3—H3	126.6	C13 ⁱⁱ —C14—H14	120.2
C6—O3—C7	115.5 (4)	O4—C15—N6	127.6 (3)
C2 ⁱ —C3—C2	120.6 (4)	O4—C15—C12	119.3 (3)
C2 ⁱ —C3—H3A	119.7	N6-C15-C12	113.0 (3)
С2—С3—НЗА	119.7	N6—C16—C17	111.5 (3)
C11—N4—C9	105.5 (3)	N6—C16—C19	110.8 (3)
C11—N4—Cu1	132.8 (2)	C17—C16—C19	107.9 (3)
C9—N4—Cu1	117.1 (2)	N6—C16—H16	108.9
O1—C4—N2	129.3 (3)	С17—С16—Н16	108.9
O1—C4—C1	118.3 (3)	С19—С16—Н16	108.9
N2—C4—C1	112.5 (3)	O5—C17—O6	124.0 (3)
C12—N5—C12 ⁱⁱ	123.6 (4)	O5—C17—C16	125.4 (3)
C12—N5—Cu2	118.2 (2)	O6—C17—C16	110.6 (3)
C12 ⁱⁱ —N5—Cu2	118.2 (2)	O6—C18—H18A	109.5
N2—C5—C6	112.1 (3)	O6—C18—H18B	109.5
N2—C5—C8	110.5 (3)	H18A—C18—H18B	109.5
C6—C5—C8	107.3 (3)	O6-C18-H18C	109.5
N2—C5—H5	109.0	H18A—C18—H18C	109.5
С6—С5—Н5	109.0	H18B—C18—H18C	109.5
С8—С5—Н5	109.0	C20—C19—C16	112.4 (4)
C17—O6—C18	116.7 (3)	С20—С19—Н19А	109.1
O2—C6—O3	124.6 (4)	С16—С19—Н19А	109.1
O2—C6—C5	126.6 (4)	С20—С19—Н19В	109.1
O3—C6—C5	108.8 (4)	С16—С19—Н19В	109.1
C15—N6—C16	116.0 (3)	H19A—C19—H19B	107.9
C15—N6—Cu2	116.6 (2)	C21—C20—N8	109.0 (3)
C16—N6—Cu2	126.3 (2)	C21—C20—C19	130.9 (4)
C22—N7—C21	107.4 (3)	N8—C20—C19	120.0 (3)
C22—N7—H7	126.3	C20—C21—N7	106.4 (3)
C21—N7—H7	126.3	C20—C21—H21	126.8
O3—C7—H7A	109.5	N7—C21—H21	126.8
O3—C7—H7B	109.5	N8—C22—N7	111.9 (3)
H7A—C7—H7B	109.5	N8—C22—H22	124.1
O3—C7—H7C	109.5	N7—C22—H22	124.1
H7A—C7—H7C	109.5		

N2 ⁱ —Cu1—N1—C1	179.10 (19)	N8—Cu2—N6—C16	41.8 (3)
N2—Cu1—N1—C1	-0.90 (19)	N8 ⁱⁱ —Cu2—N6—C16	-61.9 (3)
N4 ⁱ —Cu1—N1—C1	-99.9 (2)	N5—Cu2—N8—C22	46.9 (3)
N4—Cu1—N1—C1	80.1 (2)	N6—Cu2—N8—C22	122.4 (3)
$N2^{i}$ —Cu1—N1—C1 ⁱ	-0.90 (19)	N6 ⁱⁱ —Cu2—N8—C22	-40.5 (3)
N2—Cu1—N1—C1 ⁱ	179.10 (19)	N8 ⁱⁱ —Cu2—N8—C22	-133.1 (3)
N4 ⁱ —Cu1—N1—C1 ⁱ	80.1 (2)	N5—Cu2—N8—C20	-100.4 (2)
N4—Cu1—N1—C1 ^{i}	-99.9 (2)	N6—Cu2—N8—C20	-24.9 (2)
C1 ⁱ —N1—C1—C2	0.4 (3)	N6 ⁱⁱ —Cu2—N8—C20	172.2 (2)
Cu1—N1—C1—C2	-179.6 (3)	N8 ⁱⁱ —Cu2—N8—C20	79.6 (2)
C1 ⁱ —N1—C1—C4	178.7 (3)	N2—C5—C8—C9	-50.4 (4)
Cu1—N1—C1—C4	-1.3 (3)	C6—C5—C8—C9	-172.9 (3)
N1—Cu1—N2—C4	3.3 (2)	C11—N4—C9—C10	0.2 (4)
N2 ⁱ —Cu1—N2—C4	3.3 (2)	Cu1—N4—C9—C10	159.3 (2)
N4 ⁱ —Cu1—N2—C4	131.2 (2)	C11—N4—C9—C8	179.0 (4)
N4—Cu1—N2—C4	-126.6 (3)	Cu1—N4—C9—C8	-21.8 (5)
N1—Cu1—N2—C5	171.8 (3)	C5—C8—C9—C10	-110.0 (5)
N2 ⁱ —Cu1—N2—C5	171.8 (3)	C5—C8—C9—N4	71.4 (5)
N4 ⁱ —Cu1—N2—C5	-60.3 (3)	N4—C9—C10—N3	0.6 (4)
N4—Cu1—N2—C5	41.9 (3)	C8—C9—C10—N3	-178.1 (4)
N1—C1—C2—C3	-0.8 (5)	C11—N3—C10—C9	-1.2 (4)
C4—C1—C2—C3	-178.8 (3)	C9—N4—C11—N3	-1.0 (4)
C1—C2—C3—C2 ⁱ	0.4 (2)	Cu1—N4—C11—N3	-155.4 (3)
N1—Cu1—N4—C11	50.6 (4)	C10—N3—C11—N4	1.4 (4)
N2 ⁱ —Cu1—N4—C11	-36.7 (3)	C12 ⁱⁱ —N5—C12—C13	0.0 (2)
N2—Cu1—N4—C11	126.8 (3)	Cu2—N5—C12—C13	-180.0 (2)
N4 ⁱ —Cu1—N4—C11	-129.4 (4)	C12 ⁱⁱ —N5—C12—C15	179.5 (3)
N1—Cu1—N4—C9	-101.4 (2)	Cu2—N5—C12—C15	-0.5 (3)
N2 ⁱ —Cu1—N4—C9	171.3 (2)	N5-C12-C13-C14	0.0 (5)
N2—Cu1—N4—C9	-25.2 (2)	C15—C12—C13—C14	-179.5 (3)
N4 ⁱ —Cu1—N4—C9	78.6 (2)	C12—C13—C14—C13 ⁱⁱ	0.0 (2)
C5—N2—C4—O1	3.9 (5)	C16—N6—C15—O4	4.6 (5)
Cu1—N2—C4—O1	173.5 (3)	Cu2—N6—C15—O4	173.3 (3)
C5—N2—C4—C1	-174.4 (3)	C16—N6—C15—C12	-173.6 (3)
Cu1—N2—C4—C1	-4.8 (4)	Cu2—N6—C15—C12	-4.8 (4)
N1-C1-C4-O1	-174.6 (3)	N5-C12-C15-O4	-174.9 (3)
C2-C1-C4-01	3.6 (5)	C13—C12—C15—O4	4.6 (5)
N1—C1—C4—N2	3.9 (4)	N5-C12-C15-N6	3.5 (4)
C2-C1-C4-N2	-177.9 (4)	C13—C12—C15—N6	-177.1 (3)
N6—Cu2—N5—C12	-1.58 (18)	C15—N6—C16—C17	-80.8 (4)
N6 ⁱⁱ —Cu2—N5—C12	178.42 (18)	Cu2—N6—C16—C17	111.7 (3)
N8—Cu2—N5—C12	78.72 (19)	C15—N6—C16—C19	159.0 (3)
N8 ⁱⁱ —Cu2—N5—C12	-101.28 (19)	Cu2—N6—C16—C19	-8.5 (4)
N6—Cu2—N5—C12 ⁱⁱ	178.42 (18)	C18—O6—C17—O5	-0.2 (5)

N6 ⁱⁱ —Cu2—N5—C12 ⁱⁱ	-1.58 (18)	C18—O6—C17—C16	178.6 (3)	
N8—Cu2—N5—C12 ⁱⁱ	-101.28 (19)	N6—C16—C17—O5	-17.1 (5)	
N8 ⁱⁱ —Cu2—N5—C12 ⁱⁱ	78.72 (19)	C19—C16—C17—O5	104.7 (4)	
C4—N2—C5—C6	-80.7 (4)	N6-C16-C17-O6	164.1 (3)	
Cu1—N2—C5—C6	110.7 (3)	C19—C16—C17—O6	-74.1 (4)	
C4—N2—C5—C8	159.7 (3)	N6-C16-C19-C20	-52.2 (4)	
Cu1—N2—C5—C8	-8.8 (4)	C17—C16—C19—C20	-174.5 (3)	
C7—O3—C6—O2	1.6 (6)	C22—N8—C20—C21	0.6 (4)	
C7—O3—C6—C5	179.9 (3)	Cu2—N8—C20—C21	155.7 (2)	
N2C5C6O2	-12.9 (6)	C22—N8—C20—C19	-177.2 (4)	
C8—C5—C6—O2	108.6 (4)	Cu2—N8—C20—C19	-22.2 (5)	
N2C5C6O3	168.9 (3)	C16—C19—C20—C21	-104.8 (5)	
C8—C5—C6—O3	-69.6 (4)	C16-C19-C20-N8	72.5 (5)	
N5-Cu2-N6-C15	3.7 (2)	N8—C20—C21—N7	-0.2 (4)	
N6 ⁱⁱ —Cu2—N6—C15	3.7 (2)	C19—C20—C21—N7	177.3 (4)	
N8—Cu2—N6—C15	-125.6 (2)	C22—N7—C21—C20	-0.3 (4)	
N8 ⁱⁱ —Cu2—N6—C15	130.7 (2)	C20—N8—C22—N7	-0.8 (4)	
N5-Cu2-N6-C16	171.1 (3)	Cu2—N8—C22—N7	-150.9 (3)	
N6 ⁱⁱ —Cu2—N6—C16	171.1 (3)	C21—N7—C22—N8	0.7 (4)	
Symmetry codes: (i) $-x-1$, $-y-1$, <i>z</i> ; (ii) $-x-1$, $-y$, <i>z</i> .				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N3—H3···O1 ⁱⁱⁱ	0.88	1.86	2.719 (4)	166
N7—H7···O4 ^{iv}	0.88	1.88	2.738 (4)	163
011—H11A…O5 ^v	0.84	2.00	2.785 (4)	155

Symmetry codes: (iii) x-1/2, -y-1/2, -z+1; (iv) -x-1/2, y+1/2, -z+2; (v) -x-1/2, y+1/2, -z+1.

C15

C16

06 🚱 C18

C19

C21 N7 C20 C22

N6

N8

05

05

C12A

:15

N6A

1A

8A

N5

C19A

C2A

01A

C4A

C5A

C6

02A

03A

C7A

12A

C11